MARKING SCHEME MATHEMATICS MODEL PAPER CLASS 10

SECTION -A

Time: 20 Minutes Marks: 15

Scoring Keys:

1. The quadratic equation in the following is:

A.
$$x^4 + 11x^2 + 9 = 0$$

B.
$$x^3 + 11x^2 + 9 = 0$$

C.
$$x^3 + 11x + 9 = 0$$

D.
$$x^2 + 11x + 9 = 0$$

2. The solution set of $2x^2 - 9x + 5 = 0$ is:

A.
$$\left\{ \frac{-9 \pm \sqrt{41}}{4} \right\}$$

$$\mathsf{B.}\left\{\frac{9\pm\sqrt{41}}{4}\right\}$$

C.
$$\left\{ \frac{-9 \pm \sqrt{41}}{2} \right\}$$

D.
$$\left\{ \frac{-9 \pm \sqrt{41}}{2} \right\}$$

$$3.\,\frac{1}{\alpha}+\frac{1}{\beta}=$$

A.
$$\frac{1}{\alpha\beta}$$

B.
$$\frac{1}{\alpha+\beta}$$

C.
$$\frac{\alpha\beta}{\alpha+\beta}$$

D.
$$\frac{\alpha+\beta}{\alpha\beta}$$

- **4.** The discriminant of equation $x^2 + 6x + 2 = 0$ is equal to:
 - A. 8
 - B. 28
 - C. 36
 - D. 44
- **5.** Direct variation between p and q can be expressed as:

A.
$$p = q$$

B.
$$p = \frac{1}{q}$$

C.
$$p \propto q$$

D.
$$p \propto \frac{1}{q}$$

6. In continued proportion $p: q = q: r, r$ is called as:
A. first proportional to p, q .
B. second proportional to p, q .
C. third proportional to p, q .
D. fourth proportional to p, q .
7. $\frac{x^2+1}{x+1}$ is an example of:
A. proper fraction only
B. improper fraction only
C. both proper and rational fraction
D. both improper and irrational fraction
8. The set of the whole numbers (W) in the following is:
A. {0, 1, 2, 3,}
B. $\{0, \pm 2, \pm 4, \dots \}$
C. {1,2,3,}
D. $\{0, \pm 1, \pm 2, \pm 3, \dots \dots \}$
9. The range of $R = \{(1,2), (2,2), (3,1), (4,4)\}$ is:
A. {1,3,4}
B. {1, 2, 4}
C. {2,3,4}
D. {1,2,3,4}
10. If $A = \{1,2,3,4\}$ and $B = \{5,6,7,8\}$, then which of the following binary relations is a function from B to A ?
A. $R = \{(1,5), (2,6), (3,7), (4,8)\}$
B. $R = \{(1,6), (2,5), (4,8), (4,7)\}$
C. $R = \{(5,1), (6,2), (7,3), (8,4)\}$
D. $R = \{(5,2), (6,1), (8,4), (8,3)\}$
11. The value that appears more times in a data is called:
A. mean
B. median
C. mode
D. variance
12. In the given set of data, 71, 73, 79, 77, 76, 75, 80, the median is:
A. 73
B. 76
C. 77
D. 79

- **13.** In radians, 45° is equal to:
 - A. $\frac{\pi}{2}$
 - B. $\frac{\pi}{3}$
 - C. $\frac{\pi}{4}$
 - D. $\frac{\pi}{6}$
- **14.** $1 + cot^2\theta =$
 - A. $sin^2\theta$
 - B. $cos^2\theta$
 - C. $tan^2\theta$
 - D. $cosec^2\theta$
- **15.** The number of circles that can pass through three non-collinear points is:
 - A. 0
 - **B.** 1
 - **C**. 2
 - D. 3

KEY:

MCQs No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Key	D	В	D	В	C	С	С	Α	В	С	С	В	С	D	В

SECTION-B

Time: 2 Hours 40 Minutes Marks: 36

 Attempt any NINE of the following short questions. Each question carries 4 marks.

i. Derive quadratic formula for $ax^2 + bx + c = 0$ where $a \neq 0$, by using completing square method.

Solution:

As general form of quadratic equation is

$$ax^2 + bx + c = 0$$

$$ax^2 + bx = -c$$

÷ ing by "a"

$$x^2 + 2(x)\left(\frac{b}{2a}\right) = \frac{-c}{a}$$

Adding
$$\left(\frac{b}{2a}\right)^2$$
 on B.S

$$x^{2} + 2(x)\left(\frac{b}{2a}\right) + \left(\frac{b}{2a}\right)^{2} = \left(\frac{b}{2a}\right)^{2} - \frac{c}{a}$$

 $using a^2 + 2ab + b^2 = (a+b)^2$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

Taking Square root on B.S

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

which is a required quadratic formula.

Step-1 (1 Mark)

Step-2 (1 Mark)

Step-3 (1 Mark)

Step-4 (1 Mark)

ii. Solve $4.2^{2x} - 10.2^x + 4 = 0$.

Solution:

$$4.2^{2x} - 10.2^x + 4 = 0$$

We can write:

iii. Find the cube roots of 64.

Solution:

Let x be the cube root of 64 i.e. $x = \sqrt[3]{64}$ $x = 64^{1/3}$ Taking Cube on B.S Step-1 $x^3 = 64^{3 \times 1/3}$ $x^3 - 64 = 0$ $x^3 - 4^3 = 0$ $(x-4)(x^2+4x+16) = 0$ By using $\int a^3 - b^3 = (a-b)(a^2+ab+b^2)$ So either $x^2 + 4x + 16 = 0$

or

x - 4 = 0

iv. If α , β are roots of $x^2 - 4x + 2 = 0$, find the equation whose roots are $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$.

Solution:

As for
$$x^2 - 4x + 2 = 0$$
, $\alpha + \beta = -\frac{b}{a} = -\frac{-4}{1} = 4$ and $\alpha\beta = \frac{c}{a} = \frac{2}{1} = 2$

Required equation whose roots are $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ is $x^2 - Sx + P = 0 \rightarrow \bullet$ Step-1

For
$$S = \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$
 & $P = \frac{\alpha}{\beta} \times \frac{\beta}{\alpha}$ Step-3
$$S = \frac{\alpha^2 + \beta^2}{\alpha\beta}$$
 & Step-2
$$S = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$
 Step-2
$$S = \frac{4^2 - 2(2)}{2} \Rightarrow \frac{16 - 4}{2} \Rightarrow \frac{12}{2}$$
 S = 6

Put
$$S = 6$$
 and $P = 1$ in \bullet

So
$$\Rightarrow x^2 - 6x + 1 = 0$$
 is a required solution. \int Step-4

v. Find the mean proportional of $a^2 - b^2$ and $\frac{a+b}{a-b}$.

Solution:

Let x be the mean proportional of $a^2 - b^2$ and $\frac{a+b}{a-b}$.

Step-1 $\Rightarrow a^2 - b^2 : x :: x : \frac{a+b}{a-b}$ As product of mean = product of extreme

$$x^{2} = a^{2} - b^{2} \times \frac{a+b}{a-b}$$

$$x^{2} = (a+b)(a-b) \times \frac{a+b}{a-b}$$

$$x^{2} = (a+b)^{2}$$
Taking square root on B.S.
$$\sqrt{x^{2}} = \sqrt{(a+b)^{2}}$$

$$x = \pm (a+b)$$
Step-2

Step-3

Step-3

vi. Resolve into partial fraction $\frac{4x+2}{(x+2)(2x-1)}$.

Solution:

Let
$$\frac{4x+2}{(x+2)(2x-1)} = \frac{A}{x+2} + \frac{B}{2x-1} \rightarrow \bullet$$

 $\times ing \ B. \ S \ by \ (x+2)(2x-1)$
 $4x+2 = A(2x-1) + B(x+2) \rightarrow \bullet$
Put $2x-1 \Rightarrow x = \frac{1}{2} \ in \bullet$
 $4(\frac{1}{2}) + 2 = A\left(2(\frac{1}{2}) - 1\right) + B(\frac{1}{2} + 2)$
 $4 = B(\frac{5}{2})$
 $B = \frac{8}{5}$
Put $x+2 = 0 \Rightarrow x = -2 \ in \bullet$
 $4(-2) + 2 = A(2(-2) - 1) + B(-2 + 2)$
 $-8 + 2 = A(-4 - 1)$
 $-6 = A(-5)$
 $A = \frac{6}{5}$
Put $A = \frac{6}{5} \ and \ B = \frac{8}{5} \ in \bullet$
 $\frac{4x+2}{(x+2)(2x-1)} = \frac{\frac{6}{5}}{x+2} + \frac{\frac{8}{5}}{2x-1}$
 $= \frac{6}{5(x+2)} + \frac{8}{5(2x-1)} \ Ans.$
Step-4

vii. If $U = \{1,2,3, \dots, 10\}$, $A = \{2,4,6,8,10\}$ and $B = \{1,3,5,7,9\}$, then verify

Solution:

 $(A \cup B)' = A' \cap B'.$

Here,
$$U = \{1,2,3, \dots, 10\}$$
, $A = \{2,4,6,8,10\}$ and $B = \{1,3,5,7,9\}$ To Prove: $(A \cup B)' = A' \cap B'$.

First:
$$A \cup B = \{2,4,6,8,10\} \cup \{1,3,5,7,9\}$$

$$A \cup B = \{1,2,3,4,5,6,7,8,9,10\}$$

$$L. H. S: (A \cup B)'$$

$$U - (A \cup B)' = \{1,2,3,4,5,6,7,8,9,10\} - \{1,2,3,4,5,6,7,8,9,10\}$$

$$= \{\} \rightarrow \bullet$$
& $A' = U - A = \{1,2,3,4,5,6,7,8,9,10\} - \{2,4,6,8,10\}$

$$A' = \{1,3,5,7,9\}$$
& $B' = U - B = \{1,2,3,4,5,6,7,8,9,10\} - \{1,3,5,7,9\}$

$$B' = \{2,4,6,8,10\}$$

$$R. H. S = A' \cap B'$$

$$A' \cap B' = \{1,3,5,7,9\} \cap \{2,4,6,8,10\}$$

$$= \{\} \rightarrow \bullet$$
From \bullet & \bullet
L. H. S = R. H. S
i.e. $(A \cup B)' = A' \cap B'$.

viii. A set of data contains the values as 105,80,90,75,100,105 and 110. Show

that Mode > Median > Mean. Proof: Given Data is 105,80,90,75,100,105 and 110. To Find Mean: $Mean = \frac{x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7}{7}$ $Mean = \frac{105+80+90+75+100+105+110}{7}$ Step-1 $Mean = 95 \rightarrow \mathbf{0}$ To Find Median: First arrange data in ascending order i.e. 75,80,90,100,105,105,110 Step-2 $Median = 100 \rightarrow 2$ To Find Mode: Mode is the most frequent value, So. $Mode = 105 \rightarrow \mathbf{6}$ From **0**,**2** and **3**, Step-4 Mode > Median > Mean105 > 100 > 95

ix. An arc of a circle subtends an angle of 2 radians at the center. If the area of sector formed is $64cm^2$, find the radius of the circle.

Solution:

$$\theta = 2 \ radian$$

$$Area = 64 \ cm^2$$

$$r = ?$$
We know that:
$$A = \frac{1}{2} \ r^2 \theta$$

$$64 = \frac{1}{2} \ r^2 (2)$$

$$64 = r^2 \Rightarrow r^2 = 64$$
Taking square on B.S
$$r = 8 \ cm$$
Step-4

x. Prove that: $cos x - cos x sin^2 x = cos^3 x$.

$$L. H. S = cos x - cos x sin^2 x$$

$$cosx(1 - sin^2x) = 1$$
 Step-1
As $cos^2\theta + sin^2\theta = 1 \Rightarrow cos^2\theta = 1 - sin^2\theta$ Step-2
 $= cosx(cos^2x)$ Step-3
 $= cos^3x$
 $= R.H.S$ Step-4

xi. \overline{AB} and \overline{AC} are tangent segments to the circle with centre 0. If $m\overline{OB} = 6cm$ and $m\overline{OA} = 10cm$, then find $m\overline{AB}$ and $m\overline{AC}$.

Solution:

Since AOB is a right triangle.

$$\therefore (m\overline{OA})^2 = (m\overline{AB})^2 + (m\overline{OB})^2$$

$$(10)^2 = (m\overline{AB})^2 + (6)^2$$

$$100 = (m\overline{AB})^2 + 36$$

$$(m\overline{AB})^2 = 100 - 36$$

$$(m\overline{AB})^2 = 64$$

$$m\overline{AB} = 8cm$$

$$m\overline{AB} = m\overline{AC} = 8cm$$

Step-1 Step-2 Step-3 Step-4

Prove that equal chords of a circle subtend equal angles at the center. Prove for only one circle.

Proof:

Given:

A circle with center O. \overline{AB} and \overline{CD} are two chords of the circle (which are not diameters) such that $\overline{AB} \cong \overline{CD}$ or $m\overline{AB} \cong m\overline{CD}$.

Arcs subtend $\angle 1$ and $\angle 2$ at the center.

To Prove: $\angle 1 = \angle 2$

Construction: We Join O to A, B, C and D respectively so that $m\overline{OA} =$

 $m\overline{OB} = m\overline{OC} = m\overline{OD} = radii$ of a circle.

Statements	Reasons		
$In \ \Delta OAB \leftrightarrow \Delta OCD$			
$\overline{OA} \cong \overline{OC}$	Radii of same circle.		
$\overline{OB}\cong\overline{OD}$	Radii of same circle.		
$\overline{AB}\cong\overline{CD}$	Given		
$\therefore \qquad \Delta OAB \cong \Delta OCD$	$S. S. S \cong S. S. S$		
∴ ∠1 ≅ ∠2	Corresponding angles of congruent triangles.		

Given & To Prove	Construction	Proof
01 Mark	01 Mark	02 Marks

Marks: 24

NOTE: Attempt any THREE of the following questions. Each question carries 8 marks.

2. In $\triangle ABC$, $m\overline{AB} = 8cm$, $m\overline{BC} = 12cm$, $m\angle B = 100^{\circ}$. The projection of \overline{BC} on \overline{AB} is 6cm. Find $m\overline{AC}$.

Solution:

3. Prove that If two chords of a circle are congruent then they will be equidistant from the center.

Given:

A circle with center O, \overline{AB} and \overline{CD} are two congruent chords of the circle.

To Prove: \overline{AB} and \overline{CD} are equidistant from the center O.

Construction: Join O to A and C. Also draw perpendicular \overline{OE} and \overline{OF} on the given chords \overline{AB} and \overline{CD} respectively.

Statements	Reasons
Since $\overline{OE} \perp \overline{AB}$ and $\overline{OF} \perp \overline{CD}$	Construction
$\therefore \overline{AE} \perp \overline{EB} \ and \ \overline{CF} \perp \overline{DF}$	By the use of Theorem 9.3
or $m\overline{AE} = m\overline{EB}$ and $m\overline{CF} = m\overline{DF}$	

 $m\overline{AB} \cong m\overline{CD}$ But Given $m\overline{AE} + m\overline{EB} = m\overline{CF} + m\overline{DF}$ or Segment addition postulate $m\overline{AE} + m\overline{AE} = m\overline{CF} + m\overline{CF}$ $m\overline{EB} = m\overline{AE}$ and $m\overline{DF} = m\overline{CF}$ $2m\overline{AE} = 2m\overline{CF}$ Adding equal quantities. $m\overline{AE} = m\overline{CF}$ Dividing both sides by 2. $\overline{AE} = \overline{CF} \rightarrow \mathbf{0}$ Or Now, in $\triangle AOE \leftrightarrow \triangle COF$ $\overline{OA} = \overline{OC}$ Radii of the same circle From **1** proved above $\overline{AE} = \overline{CF} \rightarrow \mathbf{Q}$ Right angles $\angle AEO \cong \angle CFO$ $H.S \cong H.S$ $\therefore \Delta AOE \cong \Delta COF$ Corresponding sides of the triangle. $\therefore \overline{OE} = \overline{OF} \text{ or } m\overline{OE} = m\overline{OF}$ $\therefore \overline{AB}$ and \overline{CD} are equidistant from the center of the circle.

Given	To Prove	Construction	Proof
01 Mark	01 Mark	02 Marks	04 Marks

4. Prove that the angle in a semi-circle is a right angle.

Given:

A circle with center O, \overline{AB} is a diameter of the circle and $\angle ACB$ is the any angle in the semi-circle.

To Prove: $\angle ACB$ is a right angle i.e. $m \angle ACB = 90^{\circ}$.

Construction: Join *O* to *A* and *C*.

 $\therefore \Delta OAC$ is an isoceles triangle.

and $m \angle OAC \cong m \angle OCA \rightarrow \mathbf{0}$

Similarly in the $\triangle OCB$

$$m\overline{OB} \cong m\overline{OC}$$

 \therefore and $m \angle OBC \cong m \angle OCB \rightarrow \mathbf{2}$

$$\therefore m \angle OAC + m \angle OBC = m \angle OCA + m \angle OCB$$

$$m \angle OAC + m \angle OBC = m \angle ACB \rightarrow \mathbf{6}$$

 $But \ m \angle OAC + \ m \angle OBC + m \angle ACB = 180^{\circ}$

$$Or \ m \angle ACB + \ m \angle ACB = 180^{\circ}$$

$$\Rightarrow m \angle ACB = 90^{\circ}$$

or $\angle ACB$ is a right angle.

Definition of *isoceles triangle*

If two sides of a triangle are equal, the angles which are opposite to them are also equal.

Radii of a circle.

Adding • and •

$$m \angle OCA + m \angle OCB = m \angle ACB$$

- : The sum of three angles of a triangle is equal to 180°.
- $\because m \angle OAC + m \angle OBC = m \angle ACB$ Adding two equal numbers.

The angle inscribed in a semicircle is always a right angle (90°).

Given	To Prove	Construction	Proof
01 Mark	01 Mark	02 Marks	04 Marks

5. Construct a triangle with sides 4 cm, 4.5 cm and 5 cm. Also draws its circumcircle.

Steps of Construction:

- i. Draw a line segment $\overline{AB} = 4cm$.
- ii. At point "B" draw an arc of radius 4.5cm.
- iii. At point "A" draw an arc of radius 5cm.
- iv. Both arcs intersect at point C.
- v. Join A, B to C.
- vi. $\triangle ABC$ is a required triangle.
- vii. Draw right bisector of \overline{AB} , \overline{BC} and \overline{CA} .
- viii. All right bisector can pass through O.
- ix. Draw radius \overline{OA} , \overline{OB} and \overline{OC} .

x. Draw a circle of radius $\overline{OA}, \overline{OB}$ or \overline{OC} , which is the required circumcircle of the given triangle.

Construction	Steps of Construction
04 Marks	04 Marks